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Notations

X
b  = Background state vector

B = Background error covariance matrix
X

a  = Analysis state vector or Estimated state vector
A = Analysis error covariance matrix
Y

o 
 = Observation vector

R = Observation error covariance matrix
H = Observation operator or transformation model (linear version, H = dH/dX @ t)
M = Transition model for time integration ( linear version, M = dM/dX @ t )
Q  = Model error covariance matrix
Y

d
 = Innovation or observation increment [ Y

o 
 - H X

b 
 ]

D = Innovation covariance [ HBHT + R ]
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Details of the Notations: (Basic concepts)

Time Integration model (M
nxn

): 
X

(t)
 = MX

(t-1)
Observation Operator (H

pxn
):

Y  = HX
Error covariance matrix:

A
nxn

 = ∑ (X
a 

- X)(X
a 

- X)T

B
nxn

 = ∑ (X
b 

- X)(X
b 

- X)T

R 
pxp

= ∑ (Y
o  

- HX)(Y
o  

- HX)T

Q 
nxn

= B - MAMT

The model error is that component of the forecast error (background error) which arise due to uncertainties in the model. 
This excludes the error in the initial state propagated through time integration forward and/or backward.
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Closed ( not isolated ) System
Temperature inside the iron dome.

But the variations in the interior temperature depends on the variation in the 
dome temperature.

Variations in the dome temperature depends on the environmental conditions.

Every moment when we open the door of the iron dome we disturb the closed 
system and thereby introduce some error in the observation.

Hence we need some sort of model

X(t) = M [ X(t-1), F(t) ] + noise

We can also use indirect observation.

Y(t) = H [ X(t), L(t) ] + noise

Forcing F(t) 

Observation X(t) Indirect 
Observation 
Y(t)  
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Data Assimilation: 
● Numerical weather prediction (NWP) is an initial-value problem for which initial data 

are not available in sufficient quantity and with Sufficient accuracy
● Estimation of a realistic initial state for a model forecast.
● Data assimilation is a method which determine the state of a system ( atmosphere or ocean 

or land ) as accurate as possible using all the available information.
● Data assimilation is a statistical combination of observation and short range forecast.  
● Data assimilation is a model integration nudged by innovation (observation increment) 

using proper weight in such a way that it remains close to the reality of the system.

X
a
 = X

b
 + WY

d
 

Reference: Ghil (1981), Talagrand (1997), Kalnay (2003)

Eq (15) 
in a later slide
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Methods to determine the weight for innovation:

X
a
 = X

b
 + WY

d
 

1. Empirical weight: Multiple iteration using empirical weight until the convergence is 
achieved.
eg:- Successive Correction Method (SCM): Berglhorsson and Doos (1955), 

Cressman (1959), Barnes (1964)
2. Least Square Method: Analysis error minimisation at each grid point.

eg:- Optimum Interpolation (OI): Gandin 1963
3. Cost function minimisation: Variational Assimilation use minimization of cost 

function simultaneously for the entire domain.
eg:- 3D-Var: Sasaki (1970)

4D-Var: Boutlier and Rabier 1997
4. Analysis error covariance minimization :

eg:- Kalman Filter Family

Eq (15) 
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Bayes Filter

Thomas Bayes (1701-1761)

Bayes Filter is a framework for recursive state estimation proposed by Thomas Bayes

Background (First guess): “The degree of belief may be based on prior knowledge about the event, such 
as the results of previous experiments (objective evidence), or on personal beliefs (subjective hypothesis) about 
the event. ”

Bayesian Approach ( Recursive approach )
(1) Construct the background of the state based on all available information
(2) Estimation of background statistics (eg: mean, variance, etc)
(3) Use new measurements for the recursive updation of estimate.

(1) Batch Processing 
(2) Sequential Processing

The updated (corrected) estimate is what we call as “analysis”
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Bayes Filter Classification

1) Model (Transition and observation models) based classification
Linear : X(t) = (M1) X(t-1)+ (M2) F(t) + noise

Y(t) = (H1) X(t) + (H2) L(t) + noise
Non-linear : X(t)= M [ X(t-1), F(t) ] + noise

Y(t) = H [ X(t), L(t) ] + noise
2) Classification based on the nature of Noise

Gaussian 
Non-Gaussian

3) Sampling method based classification 
Parametric (eg: Particle filter)
Non-Parametric (eg: Monte Carlo methods)

4) Observation processing based classification
Batch Processing : (eg: variational DA)
Sequential Processing (eg: Kalman filter family)

Subsets of Bayes Filter : Kalman Filter, Particle Filter, discrete filter etc

Nogueira et al. (2016)
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Best Linear Unbiased Estimate (BLUE)

Consider the estimate (x
a
) from the available “independent” information (x

o
) and (x

b
) 

using the linear function as follows.

x
a
 = w

o
 x

o
 + w

b
 x

b

The estimate become unbiased if the mean 

E(x
o
) = E(x

b
) = E(x

a
) = E(x

t
) = m

where (x
t
) is the unknown truth.

In other words “mean noise is zero” for an unbiased system.

E(e
o
) = E(e

b
) = E(e

a
) = 0

Eq (1) 

Eq (2) 
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Best Linear Unbiased Estimate (BLUE)

Consider the model background (x
b
) at a particular grid 

point get projected using observation operator H ( x
b
 )  to 

a nearby location and a related observable parameter and 
(y

o
) be the corresponding observation at the location.

x
a
 = x

b
 + W [ y

o
 - H ( x

b
 )]

But still we need to get an appropriate weight W

x
a
 = w

o
 x

o
 + w

b
 x

b

E(x
a
) = w

o 
E(x

o
) + w

b
E(x

b
)

w
o 
+ w

b
 = 1

w
b
 = 1 - w

o

x
a
 = w

o
 x

o
 + (1 - w

o
) x

b

x
a
 = x

b 
+ w

o
 (x

o
 -x

b
) 

Now there is only one weight W = w
1

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Eq (12) 
on coming slides

Eq (3) 

Eq (1) 



Outline>>

Innovation (X
d 
) 

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Innovation term is visible in the above equation (3) 
X

d
 = X

o
 - X

b

X
a
 = X

b 
+ WX

d
 

Innovation (Observation Increment) is an unbiased (zero mean noise) extract of the 
observed information which is useful to correct the background estimate (first guess) in a 
data assimilation system.

Eq (4) 

Eq (5) 

Eq (3) 
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Best Linear Unbiased Estimate (BLUE)

x
a
 = w

o
 x

o
 + w

b
 x

b

Var  (x
a
 ) = Var[w

o
 x

o
 + w

b
 x

b
]

Var (x
a
 )  = E [ [w

o
 x

o
 + w

b
 x

b
]- [w

o 
E(x

o
) + w

b
E(x

b
)] ] 2

Var (x
a
 )  = E [w

o
 [x

o
 - E(x

o
)] +  w

b
 [x

b 
- E(x

b
)]] 2

Var (x
a
 )  = w

o
2 Var(x

o
)+  w

b
2 Var (x

b
)  

Informations (x
o
) and (x

b
) are “independent”, which makes the cross covariance term zero.

Answer to exercise 1 on the lecture note:

2w
o
 w

b
[x

o
 - E(x

o
)][x

b 
- E(x

b
)]=0

Eq (1) 

 (a+b)2 expansion

Eq (6) 
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Best Linear Unbiased Estimate (BLUE)

Eq (6.1) 

Eq (7) 

Eq (8) 

Eq (6) 

w
b
 = 1 - w

o

w
b

2 = (1 -w
o
) 2

w
b

2 = 1 + w
o
2 - 2 w

o

w
b

2 = 1 + W 2 - 2 W

Var (x
a
 )  = w

o
2 Var(x

o
)+  w

b
2 Var (x

b
) 

We can rewrite Eq (6) as follows

Var (x
a
 )  = Var (x

b
)  + W 2 [Var(x

o
)  +   Var (x

b
) ] - 2W Var (x

b
) 

The derivative of Eq (6) on W  gives :-

 0 + 2W [Var(x
o
)  +   Var (x

b
) ]  - 2Var (x

b
)  = 0

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

1-W =  Var (x
o
) /  [Var(x

o
)  +   Var (x

b
) ]
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Best Linear Unbiased Estimate (BLUE)

Eq (6) 

Eq (9) 

Eq (11) 

Eq (10) 

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

1-W =  Var (x
o
) /  [Var(x

o
)  +   Var (x

b
) ]

Var (x
a
 )  = w

o
2 Var(x

o
)+  w

b
2 Var (x

b
) 

Var (x
a
 )  = W2Var(x

o
)+  (1 -W )2Var (x

b
) 

Var (x
a
 )  = [Var (x

b
) ]2Var(x

o
)/  [Var(x

o
)  +   Var (x

b
) ] 2 + 

[Var(x
o
)]2 Var (x

b
) / [Var(x

o
)  +   Var (x

b
) ]2 

Var (x
a
 )  = Var(x

o
) Var (x

b
)  / [Var(x

o
)  +   Var (x

b
) ] 

[Var (x
a
 ) ]-1 = [Var(x

o
)]-1 + [Var (x

b
)]-1

Eq (7) 

Uncertainty (variance) in the estimate is less than the minimum among the uncertainties (variances) of each of the available information.
Precision of the analysis is the sum of precisions of the individual informations.

Eq (8) 

Analysis error covariance Ac  = Var (x
a
 )  

Background error covariance Bc  = Var (x
b
)  

Observation error covariance Rc  = Var(x
o
) 

W = Bc  [ Rc  + Bc  ]
-1

[1-W ]= R c [ R c + Bc  ]
-1

Ac  = Rc Bc  [ Rc  + Bc  ]
-1

Ac  =  [ 1-W] Bc 
Ac  = Rc W

Since W< I : Ac< Bc  and  Ac< Rc  
[Ac ]

-1 = [Rc ]
-1 + [Bc ]

-1
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Best Linear Unbiased Estimate (BLUE)

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Eq (3) is already linear and unbiased from the previous slides. Optimal weight is the fraction of background error 
variance to the total error variance.

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

The larger the background error variance the larger the correction on the first guess.

Gauss-Markov Theorem: Least square estimate have the minimum uncertainty among all kind of linear unbiased 
estimate.

Reference: Theil 1971

Rao–Blackwell theorem : If the noise associated with all the available information is gaussian, then the least square 
estimate is the best among all estimates (including non-linear estimates).

Reference: Lehmann and Scheffé 1950

Eq (3) 

Eq (7) 
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Basic Optimality of the Estimators

1. Least sum of squared errors

Least square estimation.

2. Minimum variance estimates

Analysis error covariance minimisation.

3. Maximum likelihood estimates

Maximum probability of a state vector

Reference: Lewis et al (2006) book.
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Transformation Model or Observation Operator (H )

Usage of observation operator (H 
PxN

 ).

● Transformation of state variable (X 
Nx1

 ) into observation variable (Y 
Px1

 )
● Horizontal interpolation
● Vertical interpolation
● Temporal interpolation

(Y  )
Px1

 = (H  )
PxN

(X  )
Nx1

Innovation in observation space Y
do

  is defined as 
Y

do
 = Y

o
 - H X

b
 

Presence of observation operator along with Optimum Estimation (BLUE) algorithm enables an Optimum 
Interpolation (OI). Details on slide entitled Filtering Properties of Optimal Interpolation
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Innovation on the observation space (Y
d
 )

X
d
 = X

o
 - X

b

Equation (4) describe the innovation in the state space. Now we can use the observation operator to define 
innovation in observation space.

HX
d
 = H[ X

o
 - X

b 
]

Y
d
 = [Y

o
 - HX

b 
]

X
a
 = X

b 
+ WX

d
 

Now we require a slight modification in the weight

W = WHT

X
a
 = X

b 
+ WY

d
 

Eq (4) 

Eq (12) 

Eq (5) 

Eq (13) 
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Optimal Interpolation (OI) : 

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Consider the model background (x
b
) at a particular 

grid point get projected to a nearby location using the 
observation operator H ( x

b
 ) and (y

o
) be an 

observation at the location.

Y
d
 = [Y

o
 - HX

b 
]

X
a
 = X

b 
+ WY

d

Weight W is given by 

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

Eq (7) 

Eq (3) Consider Y
Px1

 where ‘P’ is total number of observation, that is the 
product of number of observation parameters with number of 
observation locations.   

Consider X
Nx1

 where ‘N’ is total number of background information, 
that is the product of the number of model variables with number of 
model grid points.

The observation operator H
PxN

 is a transformation matrix, in such a 
way that (HX)

Px1
 have the same dimension as that of Y

Px1
 and the 

difference 

Y
d
 = (H)

PxN
(X

d
 ) 

Nx1
 = [(Y

o
)

Px1
 - (H)

PxN
(X )

Nx1
 ] 

provide the innovation according to the dimension.

(X
a
) 

Nx1
 = (X

b
) 

Nx1
 + W 

NxP
 ( Y

d
 ) 

Px1

Here is the vector form of Eq(13) 
Eq (13) 

Eq (13) 

Eq (12) 

Eq (12) 
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Optimal Interpolation (OI)

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Consider the model background (x
b
) at a particular 

grid point get projected to a nearby location using the 
observation operator H ( x

b
 ) and (y

o
) be an 

observation at the location.

Y
d
 = [Y

o
 - HX

b 
]

X
a
 = X

b 
+ WY

d

Weight W is given by 

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

Eq (13) 

Eq (7) 

Eq (3) Eq (13) (X
a
) 

Nx1
 = (X

b
) 

Nx1
 + W 

NxP
 ( Y

d
 ) 

Px1

Here is the vector form of Eq(13)  

Now we need to get the weight function in the vector 
form.

Consider the background error covariance B
NxN

 and 
observation error covariance R

PxP
 along with the 

observation operator H
PxN 

 and its transpose HT 
NxP

Observation error covariance in state space is 
HT

NxP
R

PxP
H

PxN

Background error covariance in observation space is 
H

PxN
B

NxN
 HT

NxP

Eq (12) 
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Optimal Interpolation (OI)

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

Consider the model background (x
b
) at a particular 

grid point get projected to a nearby location using the 
observation operator H ( x

b
 ) and (y

o
) be an 

observation at the location.

Y
d
 = [Y

o
 - HX

b 
]

X
a
 = X

b 
+ WY

d

Weight W is given by 

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

Eq (13) 

Eq (7) 

Eq (3) 
Eq (13) 

Eq (14) 

Eq (15) 

(X
a
) 

Nx1
 = (X

b
) 

Nx1
 + W 

NxP
 ( Y

d
 ) 

Px1

Here is the vector form of Eq(13)  

Now we need to get the weight function in the vector form.

Consider the background error covariance B
NxN

 and 
observation error covariance R

PxP
 along with the observation 

operator H
PxN 

 and its transpose HT 
NxP

W 
NxP

 =  B
NxN

 HT 
NxP

 [ R
PxP

 +  H
PxN

 B
NxN

 HT 
NxP

 ]-1   

Here is the vector form of Eq(7)

We can write a combined equation as below

X
a
 = X

b
 + WY

d
 

X
a
 = X

b
+ B HT [ R  +  H B HT ]-1[Y

o
 - H X]

Eq (12) 
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Optimal Interpolation (OI)

x
a
 = x

b 
+ W  (x

o
 -x

b
) 

W = Var (x
b
) /  [Var(x

o
)  +   Var (x

b
) ]

Var (x
a
 )  = Var(x

o
) Var (x

b
)  / [Var(x

o
)  +   Var (x

b
) ] 

Notation form:

Ac  = Rc Bc  [ R c + Bc  ]
-1

Ac  =  [ 1-W] Bc 

[Ac ]
-1 = [Rc ]

-1  + [Bc ]
-1 Eq (10) 

Eq (16) 

Eq (3) 

Eq (7) 

Eq (9) 

Eq (11) 
Eq (17) 

Eq (13) 
(X

a
) = (X

b
) + W ( Y 

o
- HX

b
 ) 

A = E[e
a
e

a
T] = E [e

b
+WT(e

o
-He

b
)][e

b
+WT(e

o
-He

b
)]T

A = E [e
b
e

b
T + e

b
 (e

o
-He

b
)TWT + W (e

o
-He

b
)e

b
T  + W (e

o
-He

b
)(e

o
-He

b
)TWT]

 A
 
  =   B - BHTW T  + WHB + WRWT + WHBHTWT

A = B - BHT[B HT [ R  +  H B HT ]-1] T  + [B HT [ R  +  H B HT ]-1]HB + [B HT [ R  +  
H B HT ]-1]R[B HT [ R  +  H B HT ]-1]T + [B HT [ R  +  H B HT ]-1]HBHT[B HT [ R  +  
H B HT ]-1]T

A
NxN

 = [ I
NxN

- W
NxP

H
PxN

]B
NxN

Here is the matrix form of Eq(10)

[A]-1 = HT[R]-1H  + [B]-1

Here is the matrix form of Eq(11)

A= [HT[R]-1H  + [B]-1]-1 

The cross-covariance terms in the expansion are eliminated by considering the independence of information. That is the observation and 
background are not correlated to each other.
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Basic characteristics of Optimum Interpolation

● The analysis is obtained by adding optimal weighted innovation to the background
(X

a
) = (X

b
) + W ( Y 

o
- HX

b
 ) 

● Optimal weight is the fraction of background error covariance to the total error 
covariance

W =  B HT [ R  +  H B HT ]-1

● Error variance of the background reduced by a factor ( 1 - WH ) gives the error 
variance of the analysis

A = [ I-WH]B 
● The precision of the analysis is the sum of the precisions of both the background and 

the observation (in state space).
[A]-1 = HT[R]-1 H  + [B]-1

Eq (13) 

Eq (14) 

Eq (16) 

Eq (17) 
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Filtering Properties of Optimal Interpolation

Eliminate the interpolation aspects of the analysis by assuming
 Observation Operator (H ) to be Identity Matrix (I)

(Y
o
  )

 
= (X

o
  )

X
a
 - X

b
= B HT [ R  +  H B HT ]-1[Y

o
 - H X

b
]

X
a
 - X

b
= B[R + B]-1[X

o
 - X

b
]

X
a
 - X

b
= BA-1[X

o
 - X

b
]

X
da

 = BA-1X
do

Increment of analysis in state space (X
Nx1

)
 X

da 
= X

a
 - X

b
 

Increment of observation in state space (X
Nx1

)
 X

do 
= X

o
 - X

b
 

Reference: Daley (1991)

Eq (15) 

Eq (17) 
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Transition model (M )
The mathematical representation of the physical process which drives the time evolution of 
the state vector.

X(t) = M[X(t-1)]

One of the primary essential for the data assimilation system is a well defined time 
forwarding model (transition model).

Eq (18) 
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Markovian assumption: (sequential processing)

Andrey Andreyevich Markov (1856 - 1922)

Probability of X intersection Y  defined by markovian chain rule as
P[X ∩Y] = P[Y|X] . P[X]

P[X| Y ]P[Y] = P[Y | X ] P[X ]
(based on commutative property of intersection)
Assumptions: 

(1) The conditional independence of observation given the state 
Y(t) = H[X(t), l(t)]  or P[Y(t) | X(t)]

where l
t
 is known observation control info (eg: perturbation, location, bias).

(2) Markovian process: well defined time evolution (predictability) 
X(t) = M[X(t-1),f(t)]  or  P[X(t)| X(t-1)]

where f
t
 is known state control info (eg: perturbation, forcing, bias).

(3) Initial state is known.
P[X(0)| Y(0)] = P[ X(0)]

(4) Continuous Observations are available 
Y = [Y]

0
t

from initial time (t=0) to present ( t=t )
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Markovian Chain of Bayesian Estimation Cycle

Prediction step ( a-priori ) : generate the background (first guess) using the time transition model.

x(t) = M[x(t-1),f(t)] 
P[X(t)| X(t-1)] 

Correction step ( a-posteriori ) : generate the analysis using the observation model.

y(t) = H[x(t), l(t)]
P[Y (t)| X (t)]

P[X ∩Y] = P[Y|X] . P[X]

P[X(t)| Y (t)]P[Y(t)] = P[Y (t)| X(t) ] P[X(t)]
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Optimum Interpolation Algorithm

Minimum communication between estimator and transition model (M )
1) Optimum Interpolation [ (X

a
)
t-1

, A
 t-1

, Y
t
 ]

2) Background state X
b
 = M(X

a
)
(t-1)

 

3) Bg err covariance B = aA

4) Optimum Weight W = BHT[ HBHT + R  ]

5) Innovation Y
d
 = [ Y

o
 - H(X

b
) ]

6) Corrected state (X
a
) =(X

b
) + W Y

d
 

7) Analysis covariance A = (  I - WH ) B

8) Return [(X
a
), A ]

Eq (15) 

Eq (12) 

Eq (14) 

Eq (18) 

Eq (16) 
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Kalman Filter

Rudolf E. Kalman (1930-2016)

A state-space approach of optimal estimation algorithm based on Bayesian Filter 
for linear systems with Gaussian noise distribution is known as Kalman Filter. 

formulated by Kalman (1960) 

further improved by Kalman and Bucy (1961) 
Conditions for applicability of Kalman Filter:

1) Transition model and observation model are linear 
(or linearized or tangent-linear )

2) Noise have Zero mean Gaussian Distribution
Use:

1) Estimation of variables where direct measurement is difficult.
2) Combining of multiple observations (signal+noise) to get best estimate.
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Kalman Filter Family
● Kalman Filter(KF): 

Ghil et al 1981 
● Extended Kalman Filter (EKF): 

Einicke and White (1999)
● Ensemble Kalman Filter (EnKF): 

Evensen (1994), Houtekamer and Mitchell (1998) 
● Deterministic Ensemble Kalman Filter (EnSRF): 

Tippett et al. (2003)
● Ensemble Transform Kalman Filter (ETKF): 

Bishop  et  al.  (2001), Majumdar (2002)
● Local Ensemble Kalman Filter (LEKF): 

Kalnay and Toth (1994), Ott et al. (2002,2004)
● Local Ensemble Transform Kalman Filter (LETKF): 

Harlim and Hunt (2005)
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Properties of Gaussian Distribution

Product of two gaussians is a gaussian.

Gaussians stay gaussians under linear transformation.

Marginal and conditional distribution of a gaussian stays a gaussian.

Mean and covariance of a gaussian distribution is computable.

Matrix are invertible in a gaussian system.
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Error Variance Tracking in Kalman Filter

X
b
 (t)  = MX

a
(t-1) 

Model error is defined by the expression as follows
X

t
(t) = MX

t
(t-1) + e

m
Background error is defined as

e
b
 (t) =   X

b
 (t)  - X

t
(t)

e
b
 (t) = MX

a
(t-1) - MX

t
(t-1) -  e

m

( In the case of Extended Kalman Filter, Linearized model is used. ie M = dM/dX @ t)

e
b
 (t) = M[X

a
(t-1) - X

t
(t-1) ]-  e

m

e
b
 (t) = Me

a
(t-1) -  e

m
Mean error (bias) 

E[e
b
 (t)] = ME[e

a
(t-1)] -  E[e

m
]

Eq (18) 
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Error Variance Tracking in Kalman Filter

Background error covariance matrix B is defined by 
B = E[e

b
e

b
T]

B = E[[Me
a
(t-1) -  e

m
][Me

a
(t-1) -  e

m
]T]

B = E[Me
a
(t-1) e

a
T(t-1) MT-  e

m
e

a
T(t-1) MT - Me

a
(t-1)eT

m
 +  e

m
eT

m
]

As per variance of the sum theorem, for independent variables (e
a 

and e
m ), the cross 

covariance term become zero on summation.
B = M E [ e

a
(t-1) e

a
T(t-1) ]MT +  E[e

m
eT

m
]

B = M A MT + Q
Where Q = E[e

m
eT

m
] is the model error covariance matrix.

Eq (19) 
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Error Variance Tracking in Kalman Filter

Analysis: Optimum interpolation provide analysis state vector and analysis error variance.
(X

a
) = (X

b
) + W ( Y 

o
- HX

b
 )

W =  B HT [ R  +  H B HT ]-1

A = [ I-WH]B 

Prediction: Optimum interpolation prediction stage only provide the forecast state vector.
x

b
(t

i+1
) = M [x

a 
(t

i
)]

B = ?
Inability to track background error variance is the major limitation of Optimum interpolation.

B =  a A

But the background error variance is well tracked in Kalman Filter
B =   MAMT + Q

Eq (13) 

Eq (14) 
Eq (16) 

Eq (19)

Eq (18) 
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Kalman Filter Algorithm

1) Kalman Filter [(X
a
)
t-1

, A
 t-1

, Y
t
]

2) Background state (X
b
) = M(X

a
)
(t-1)

 

3) Bg. Err. covariance B = MAMT + Q
t

4) Kalman gain W = BHT[ HBHT + R ]-1

5) Innovation Y
d
 = [ Y

t
 - H(X

b
)]

6) Corrected state (X
a
) =(X

b
) + W Y

d

7) Analysis Err. covariance A = (  I - WH ) B

8) Return [(X
a
), A]

Eq (19)

Eq (12) 

Eq (14) 

Eq (15) 

Eq (18) 

Eq (16) 
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Challenges in Kalman Filter for Realistic Problems

(i) Expensive background error covariance computation, 

B
NxN

  = M
NxN

 A
NxN

 MT
NxN

  + Q
t

(ii) Inability to accommodate the nonlinearity of the real world dynamics,

(iii) poorly characterized error sources.

Unless special measures are taken, accumulation of roundoff error lose the 
positive definiteness of the error covariance matrix.
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Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which 
linearizes about an estimate of the current mean and covariance. 

Linearized model M = dM/dX @ t
Linearized Observation Operator H = dH/dX @ t

Background error covariance is obtained by linearizing the model about the nonlinear 
trajectory within the cycle interval.

B= M(@t) E [ e
a
(t-1) e

a
T(t-1) ]MT(@t)  +  E[e

m
eT

m
]

B = [MAMT] +  Q
W = BHT[ HBHT + R ]-1

Reference:

Eq (20)

Eq (21)

Eq (23)

Eq (22)
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Extended Kalman Filter Algorithm

Nonlinear transition model M and Nonlinear observation operator H are used in EKF.
1) Kalman Filter [(X

a
)
t-1

, A
 t-1

, Y
t
 ]

2) Background state (non linear) [X
b
 ]= M[(X

a
)
(t-1)

 ]

3) Linearized model M = dM/dX @ t

4) Background Err. covariance B  = [MAMT] +  Q 

5) Linearized Obs-Operator H = dH/dX @ t

6) Kalman gain W = BHT[ HBHT + R ]-1 

7) Innovation (non linear) Y
d
 = [ Y

o
 - H(X

b
)]

8) Corrected state (X
a
) =(X

b
) + WY

d
 

9) Analysis Err. covariance A = (  I - WH ) B

10) Return [(X
a
), A ]

Eq (20)

Eq (21)

Eq (22)

Eq (15) 

Eq (23) 

Eq (16) 

Eq (18) 

Eq (12) 
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Ensemble Kalman Filter (EnKF)

● State-space estimation methods.
● Low-rank representations of forecast and analysis error covariances.
● Stochastic analysis ensemble update methods: stochastic transformation of the 

forecast ensemble into an analysis ensemble.
● Tangent linear and adjoint models of the dynamics are not required.

Limitations

● Neglecting forecast error due to model deficiencies.
● requires an ensemble of “perturbed observations” for statistical consistency.
● ‘‘perturbed observations’’ may cause sampling issue.
● Computationally expensive

Reference : Evensen (1994), Houtekamer and Mitchell (1998)
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Ensemble Kalman Filter (EnKF)

Eq (24)

Eq (25)

Observations perturbed randomly in generating each ensemble member. All the 
individual members assimilate the same real observation with different set of random 
perturbations (to make them realistically independent). 

(Y
d 

) = ( Y 
o
+ l - HX

b
 )

An ensemble of Kalman Filter data assimilation cycles are carried out simultaneously.

[X
b
 (t)]

1,2,3,...K
  = M[X

a
(t-1) ]

1,2,3,...K
 

Reference : Evensen (1994), Houtekamer and Mitchell (1998)
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Ensemble Kalman Filter (EnKF)

Flow dependent Background error covariance is determined from the ensemble of data assimilation cycles.

Z
b
 = B1/2= [K-1] -1/2 Σ

k=1
K( X

k
- [K -1]Σ

k=1
KX

k
 )

B=  Z
b
Z

b
T = [1/[K-1]] Σ

k=1
K( X

k
- [1/K]Σ

k=1
KX

k
 )( X

k
- [1/K]Σ

k=1
KX

k
 )T

BHT =  Z
b
(HZ

b
)T = [1/[K-1]] Σ

k=1
K( X

k
- [1/K]Σ

k=1
KX

k
 )( HX

k
- [1/K]Σ

k=1
KHX

k
 ) T 

HBHT  = HZ
b
(HZ

b
)T = [1/[K-1]] Σ

k=1
K( HX

k
- [1/K]Σ

k=1
KHX

k
 )( HX

n
- [1/K]Σ

k=1
KHX

k
 )T 

W = Z
b
(HZ

b
)T[ HZ

b
(HZ

b
)T + R ]-1

A = (  I - WH ) Z
b
(Z

b
)T

Reference : Evensen (1994), Houtekamer and Mitchell (1998)

Eq (27)

Eq (26)

Eq (28)
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Ensemble Kalman Filter Algorithm 

1) Ensemble Kalman Filter [(X
a
)
t-1

, A
 t-1

, Y
t
 ]

k=1,2,3,...K

2) Background State [X
b
 ]

k=1,2,3,...K
 = m[(X

a
)
(t-1)

 ]
k=1,2,3,...K

 

3) Background Err. covariance Z
b
 = [K-1] -1/2 Σ

k=1,2,3,...K 
( X

k
- [ K -1] Σ

k=1,2,3,...K 
X

k
 )

4) Kalman gain W = Z
b
(HZ

b
)T[ HZ

b
(HZ

b
)T + R ]-1

5) Innovation (Y
d
 )

k=1,2,3,...K 
= [ Y

o
 + l

k=1,2,3,...K
- h(X

b
)]

(Y
o
 is the observation and l

k=1,2,3,...K
 are the stochastic perturbations on the innovation)

6) Corrected State (X
a
)
k=1,2,3,...K

 =(X
b
)
k=1,2,3,...K

 + W(Y
d 

)
k=1,2,3,...K

7) Analysis Err. covariance A = (  I - WH ) Z
b
(Z

b
)T

8) Return [(X
a
), A ]

k=1,2,3,...K

Eq (27)

Eq (24)

Eq (25)

Eq (26)

Eq (28) 

Eq (15) 
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Deterministic Ensemble Kalman Filter (EnSRF)

● Deterministic EnKF use Matrix square roots of error covariance and hence known 
as Kalman square root filters or Ensemble square root filters.

● Deterministic analysis ensemble update methods: analysis perturbations satisfy the 
Kalman filter analysis error covariance equation.

● Avoid sampling issues associated with the use of ‘‘perturbed observations’’.

Reference : Tippett et al. (2003)
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Deterministic Ensemble Kalman Filter (EnSRF)

A = [ I-WH]B

A = [I - [BHT[ HBHT + R ]-1]H]B

A = [I - [Z
b
Z

b
THT[ HZ

b
Z

b
THT + R ]-1]H]Z

b
Z

b
T

A = [I - [Z
b
(HZ

b
)T[( HZ

b
)(HZ

b
)T + R ]-1]H]Z

b
Z

b
T

A = [Z
b
 - [Z

b
(HZ

b
)T[( HZ

b
)(HZ

b
)T + R ]-1]HZ

b
]Z

b
T

A = Z
b
 [ I - (HZ

b
)T[( HZ

b
)(HZ

b
)T + R ]-1(HZ

b
)]Z

b
T

A = Z
b
 [ I - V[VT V+ R ]-1VT ]Z

b
T

A = Z
b
[ I - V[D]-1VT]Z

b
T

Z
a
= Z

b
[ I - V[D]-1VT]1/2

Z
a
= (K-1)-½ ∑[......] 

Z
b
= (K-1)-½ ∑[......] 

A = Z
a
Z

a
T

B = Z
b
Z

b
T

V = (HZ
b
)T

D = VT V+ R 

X 
k
 =  [ I - V[D]-1VT]1/2

[Y
d
]  = [ Y

o
 - H X

b
 - H X

k
 ]

Eq (29)

Eq (30)

Eq (31)

Eq (32)

Eq (33)

Eq (26)

Eq (34)
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Deterministic Ensemble Kalman Filter (EnSRF)

Kalman Filter

A = [ I-WH]B

W = BHT[ HBHT + R ]-1

B =   MAMT + Q

Square Root Kalman Filter

Z
a
= Z

b
X 

k
 

W = Z
b
V[ D ]-1

Z
b 

= MZ
a
 

V = (HZ
b
)T

V = [HM(Z
a
)
t-1

]T

The transformation operator which generate deterministic perturbation

Eq (27) 

Eq (16) 

Eq (19)
Eq (37)

Eq (35)

Eq (36)

Eq (31)

Eq (38)
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Deterministic Ensemble Kalman Filter Algorithm 

1) EnSRF [ (X
a 

)
D

 (x
a
)
t-1 k= 1,2,3,...K 

, (Z
a
)
t-1

, Y
t
 ]

2) Background (deterministic) [ X
b 

] = M [X
a
 
 
]

(t-1)

3) Background covariance matrix square root Z
b 

= MZ
a
 

4) Transformation Operator V = [HZ
b
]T

5) Innovation Covariance Matrix D = VT V + R

6) Kalman gain W = Z
b
V[ D ]-1

7) Analysis Perturbations (state perturbation) X 
k
 =  [ I - V[D]-1VT] ½

8) Innovation Estimate (with deterministic pert.) [Y
d
]  = [ Y

o
 - H X

b
 - H X

k
 ]

9) Corrected State (deterministic) [X
a
] = [X

b
] + W[Y

d
]  

10) Analysis Err. covariance matrix square root Z
a
= Z

b
X 

k
 

11) Return [(X
a 

)
D

 (x
a
)
k= 1,2,3,...K 

, (Z
a
) ]

Eq (35)

Eq (37)

Eq (36)

Eq (33)

Eq (18) 

Eq (15) 

Eq (38)

Eq (32)

Eq (34)
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Deterministic Ensemble Kalman Filter (EnSRF)

Classifications:
1) Ensemble Adjustment Kalman Filter (EAKF): 

Anderson (2001)
2) Ensemble Transform Kalman Filter (ETKF): 

Bishop  et  al. (2001), Majumdar et al. (2002)
3) Local Ensemble Kalman Filter (LEKF): 

Ott et al. (2002, 2004)
4) Local Ensemble Transform Kalman Filter (LETKF): 

Harlim and Hunt (2005)
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Use of Kalman Filter at NCMRWF

Atmosphere Data Assimilation

● Local Ensemble Transform Kalman Filter (LETKF) based system for atmosphere provide
○ Flow dependent background error covariance matrix for hybrid 4D-Var system.
○ Analysis perterbations for the Global (and Regional) Ensemble Prediction Systems

Land Surface Data Assimilation System

● Extended Kalman Filter (EKF) based SURFace data assimilation system updates
○ Soil Moisture, Land Surface Temperature etc
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